
Test Exam for T5 

 

Thermodynamics and 

Statistical Physics 
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Read these instructions carefully before making the exam! 

 

• Write your name and student number on every sheet. 

• Make sure to write readable for other people than yourself. Points 

will NOT be given for answers in illegible writing. 

• Language; your answers have to be in English. 

• Use a separate sheet for each problem. 

• Use of a (graphing) calculator is allowed. 

• This exam consists of 3 problems.  

• The weight of the problems is Problem 1 (P1=30 pts); Problem 2 

(P2=30 pts); Problem 3 (P3=30 pts). Weights of the various 

subproblems are indicated at the beginning of each problem.  

• The grade of the exam is calculated as (P1+P2+P3 +10)/10. 

• For all problems you have to write down your arguments and the 

intermediate steps in your calculation, else the answer will be 

considered as incomplete and points will be deducted. 

  



PROBLEM 1 

Score: a+b+c+d+e=6+6+6+6+6=30 

 

The grand partition function for a system in equilibrium with a large reservoir with 

temperature 𝑇 and chemical potential 𝜇 is given by, 

 

𝑍 = ∑ ∑ 𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁))

𝑟

∞

𝑁=0

 

 

with 𝑁 the number of particles of the system and 𝐸𝑟(𝑁) the energy if the system is in 

state 𝑟 and it has 𝑁 particles. 

 

a) Show that the mean number of particles is given by, 

 

〈𝑁〉 =
1

𝛽
(

𝜕 ln 𝑍

𝜕𝜇
)

𝛽

 

 

b) Show that the mean energy is given by, 

 

〈𝐸〉 = − (
𝜕 ln 𝑍

𝜕𝛽
)

𝜇

+ 𝜇〈𝑁〉 

 

Suppose that the system can be occupied by particles that can be in three energy states 

with energies 0, 𝜀 and 2𝜀 respectively. The three possible ways the system can be 

occupied are given in the figure below. Thus, either the system has no particles or it 

has one particle in the low energy state or it has two particles that are in the two high 

energy states. 

 

 

 

 

 

 

c) Show that the grand partition function of this system is given by, 

 

𝑍 = 1 + 𝑥 + 𝑥2𝑒−3𝛽𝜀 

with 𝑥 = 𝑒𝛽𝜇 

 

d) What is the probability that this system is in the state with the highest energy? 

Express your answer in terms of 𝑥, 𝛽 and 𝜀. 

e) Calculate the mean particle number 〈𝑁〉 for this system. Express your answer in 

terms of 𝑥, 𝛽 and 𝜀. 

 

  



2

0



PROBLEM 2 

Score: a+b+c+d =8+7+8+7=30 

 

A gas of photons is confined to a cavity with volume 𝑉. The cavity is kept at a 

temperature 𝑇 and the gas and the cavity are in thermal equilibrium. The single 

particle (photon) energy levels are 𝜀𝑖, 𝑖 = 1,2, ⋯ and the occupation numbers of these 

energy levels are 𝑛𝑖 , 𝑖 = 1,2, ⋯.  The partition function 𝑍𝑝ℎ for this gas can be 

expressed as: 

 

𝑍𝑝ℎ = ∑ ∑ ⋯ 𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )

∞

𝑛2=0

∞

𝑛1=0

 

 

a) Show that the mean number of photons 〈𝑛𝑖〉 in the state with energy 𝜀𝑖 can be 

found from this partition function by, 

 

〈𝑛𝑖〉 = −
1

𝛽
(

𝜕 ln 𝑍𝑝ℎ

𝜕𝜀𝑖
)

𝑇

 

with 𝛽 =
1

𝑘𝑇
  

 

b) Show that the mean number of photons in the state with energy 𝜀𝑖 is: 

 

〈𝑛𝑖〉 =
1

𝑒𝛽𝜀𝑖 − 1
 

 

c) Derive Plancks’s radiation law which gives the distribution of the energy density 

𝑢(𝜔, 𝑇) as a function of the photon frequency 𝜔 for radiation in thermal 

equilibrium (e.g. photons in our cavity), 

 

𝑢(𝜔, 𝑇) =
ℏ

𝜋2𝑐3

𝜔3

𝑒𝛽ℏ𝜔 − 1
 

 

HINT: The density of states for a spinless particle confined to an enclosure with 

volume 𝑉 is (expressed as a function of the particle’s momentum p): 

 

𝑓(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 

 

d) Give an equation for the value of the frequency (𝜔 = 𝜔𝑚𝑎𝑥) for which the energy 

density distribution obtains its maximum. You do not have to solve this equation. 

 

 

 

 

  



PROBLEM 3 Score: a+b+c+d =9+9+6+6=30 

 

A harmonic oscillator with energy levels given by 𝜀𝑗 = ℏ𝜔(𝑗 +
1

2
) is in equilibrium 

with a heat bath at temperature 𝑇. The angular frequency of the harmonic oscillator is 

𝜔. 

 

a) Show that the mean energy 〈𝜀〉 of this oscillator is given by: 〈𝜀〉 =
1

2
ℏ𝜔 +

ℏ𝜔

𝑒𝛽ℏ𝜔−1
 

 

Now consider a 1-dimensional linear crystal that consists of 𝑁 atoms. The crystal has 

length 𝐿. Assume that the crystal can be described as a system of N coupled 

oscillators and that this system can only vibrate in the longitudinal direction. 

 

b) Use Debye’s theory to show that the number of angular frequencies between 𝜔 

and 𝜔 + 𝑑𝜔 is given by:  

 

𝑔(𝜔)𝑑𝜔 =
𝐿

𝜋𝑣0
𝑑𝜔 

 

In this expression 𝑣0 is the velocity of the longitudinal waves. 

 

c) Explain the meaning of the Debye frequency 𝜔𝐷 and show that for this 1-

dimensional crystal, 

 

𝜔𝐷 = 𝑁
𝜋𝑣0

𝐿
 

 

d) Give an expression for the heat capacity 𝐶𝑉 of this 1-dimensional crystal and 

calculate the heat capacity for high temperatures (limit  𝑇 → ∞). 

 

  



Solutions 

 

PROBLEM 1 

 

a) 

 

(
∂ln 𝑍

𝜕𝜇
)

𝛽

=
∑ ∑ 𝛽𝑁𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁))

𝑟
∞
𝑁=0

𝑍
= 𝛽 ∑ ∑ 𝑁

𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁))

𝑍
𝑟

∞

𝑁=0

= 𝛽 ∑ ∑ 𝑁𝑃(𝑁, 𝑟) = 𝛽〈𝑁〉

𝑟

∞

𝑁=0

⇒ 

 

〈𝑁〉 =
1

𝛽
(

𝜕 ln 𝑍

𝜕𝜇
)

𝛽

 

 

b)  

 

(
∂ln 𝑍

𝜕𝛽
)

𝜇

=
∑ ∑ (𝜇𝑁 − 𝐸𝑟(𝑁))𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁))

𝑟
∞
𝑁=0

𝑍

= − ∑ ∑ 𝐸𝑟(𝑁)
𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁))

𝑍
𝑟

∞

𝑁=0

+ 𝜇 ∑ ∑ 𝑁
𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁))

𝑍
𝑟

∞

𝑁=0

= − ∑ ∑ 𝐸𝑟(𝑁)𝑃(𝑁, 𝑟) + 𝜇 ∑ ∑ 𝑁𝑃(𝑁, 𝑟) = −〈𝐸〉 + 𝜇〈𝑁〉

𝑟

∞

𝑁=0𝑟

∞

𝑁=0

⇒ 

 

 

〈𝐸〉 = − (
𝜕 ln 𝑍

𝜕𝛽
)

𝜇

+ 𝜇〈𝑁〉 

 

c) 

 

𝑍 = ∑ ∑ 𝑒𝛽(𝜇𝑁−𝐸𝑟(𝑁)) =

𝑟

∞

𝑁=0

𝑒𝛽(𝜇×0−0) + 𝑒𝛽(𝜇×1−0) + 𝑒𝛽(𝜇×2−3𝜀)

= 1 + 𝑒𝛽𝜇 + 𝑒𝛽(2𝜇−3𝜀) = 1 + 𝑥 + 𝑥2𝑒−3𝛽𝜀 

 

d)  

The probability that the system is in a state with 𝑁 particles and has energy 𝐸(𝑁)is: 

 

𝑃(𝑁, 𝐸(𝑁)) =
𝑒𝛽(𝜇𝑁−𝐸(𝑁))

𝑍
 

 

In this case 𝑁 = 2 and 𝐸(𝑁) = 3𝜀, thus, 

 

𝑃(2, 3𝜀) =
𝑒𝛽(2𝜇−3𝜀)

𝑍
=

𝑥2𝑒−3𝛽𝜀

1 + 𝑥 + 𝑥2𝑒−3𝛽𝜀
 

 



e) 

〈𝑁〉 =
1

𝛽
(

𝜕 ln 𝑍

𝜕𝜇
)

𝛽

=
1

𝛽
(

𝜕 ln 𝑍

𝜕𝑥
)

𝛽
(

𝜕𝑥

𝜕𝜇
)

𝛽

=
1

𝛽
(

𝜕 ln(1 + 𝑥 + 𝑥2𝑒−3𝛽𝜀)

𝜕𝑥
)

𝛽

(
𝜕𝑒𝛽𝜇

𝜕𝜇
)

𝛽

=
1

𝛽
(

1 + 2𝑥𝑒−3𝛽𝜀

1 + 𝑥 + 𝑥2𝑒−3𝛽𝜀
) (𝛽𝑒𝛽𝜇) =

𝑥 + 2𝑥2𝑒−3𝛽𝜀

1 + 𝑥 + 𝑥2𝑒−3𝛽𝜀
 

  



 

PROBLEM 2 

 

a) 

The partition function is (with 𝛽 =
1

𝑘𝑇
): 

 

𝑍𝑝ℎ = ∑ ∑ ⋯ 𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )

∞

𝑛2=0

∞

𝑛1=0

 

 

 

Differentiating ln 𝑍𝑝ℎ with respect to 𝜀𝑖 gives: 

 

 

𝜕 ln 𝑍𝑝ℎ

𝜕𝜀𝑖
=

−𝛽

𝑍𝑝ℎ
∑ ∑ ⋯ 𝑛𝑖𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ ) ⇒

∞

𝑛2=0

∞

𝑛1=0

 

 

𝜕 ln 𝑍𝑝ℎ

𝜕𝜀𝑖
= −𝛽

∑ ∑ ⋯ 𝑛𝑖𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )∞
𝑛2=0

∞
𝑛1=0

∑ ∑ ⋯ 𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )∞
𝑛2=0

∞
𝑛1=0

= −𝛽
∑ 𝑛𝑖𝑒−𝛽𝑛𝑖𝜀𝑖 ∑ ⋯ 𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )∞

𝑛1,𝑛2,⋯𝑛𝑖−1,𝑛𝑖+1,⋯=0
∞
𝑛𝑖=0

∑ 𝑒−𝛽𝑛𝑖𝜀𝑖 ∑ ⋯ 𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )∞
𝑛1,𝑛2,⋯𝑛𝑖−1,𝑛𝑖+1,⋯=0

∞
𝑛𝑖=0

= −𝛽
∑ 𝑛𝑖𝑒−𝛽𝑛𝑖𝜀𝑖∞

𝑛𝑖=0

∑ 𝑒−𝛽𝑛𝑖𝜀𝑖∞
𝑛𝑖=0

= −𝛽〈𝑛𝑖〉 ⇒ 

 

〈𝑛𝑖〉 = −
1

𝛽
(

𝜕 ln 𝑍𝑝ℎ

𝜕𝜀𝑖
)

𝑇

 

 

b)  

The partition function can be further evaluated as 

 

𝑍𝑝ℎ = ∑ ∑ ⋯ 𝑒−𝛽(𝑛1𝜀1+𝑛2𝜀2+⋯ )

∞

𝑛2=0

∞

𝑛1=0

= ∏ ∑ 𝑒−𝛽(𝑛𝑖𝜀𝑖)

∞

𝑛𝑖=0

∞

𝑖=1

= ∏
1

1 − 𝑒−𝛽𝜀𝑖

∞

𝑖=1

 

 

 

Taking the logarithm : 

 

ln 𝑍𝑝ℎ = − ∑ ln(1 − 𝑒−𝛽𝜀𝑖)

∞

𝑖=1

 

 

 

The mean number of photons then follows from: 

 

 



〈𝑛𝑖〉 = −
1

𝛽
(

𝜕 ln 𝑍𝑝ℎ

𝜕𝜀𝑖
)

𝑇

=
1

𝛽
(

−𝑒−𝛽𝜀𝑖

1 − 𝑒−𝛽𝜀𝑖
) (−𝛽) =

1

𝑒𝛽𝜀𝑖 − 1
 

 

 

 

c) 

For photons 𝜀 = ℏ𝜔 and 𝑝 =
𝜀

𝑐
. Using this equation together with the hint we find for 

the density of states for the photons in terms of frequency 𝜔 (remember to multiply 

with a factor 2 for the two possible polarization states of the photon): 

 

𝑓(𝜔)𝑑𝜔 = 2
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 =

𝑉

ℎ3
4𝜋 (

ℏ𝜔

𝑐
)

2 ℏ𝑑𝜔

𝑐
=

𝑉

𝜋2𝑐3
𝜔2𝑑𝜔 

 

The number of photons 𝑑𝑁 and the energy 𝑑𝐸 in the range 𝜔 to 𝜔 + 𝑑𝜔 are given by,  

 

𝑑𝑁 =
𝑉

𝜋2𝑐3
𝜔2

1

𝑒𝛽ℏ𝜔 − 1
𝑑𝜔 

And  

 

𝑑𝐸 = ℏ𝜔𝑑𝑁 =
𝑉

𝜋2𝑐3

ℏ𝜔3

𝑒𝛽ℏ𝜔 − 1
𝑑𝜔 

 

And for the energy density we find, 

 

𝑢(𝜔, 𝑇)𝑑𝜔 =
ℏ

𝜋2𝑐3

𝜔3

𝑒𝛽ℏ𝜔 − 1
𝑑𝜔 

 

d) 

The maximum occurs when, 

 

𝜕𝑢(𝜔, 𝑇)

𝜕𝜔
= 0 ⇒

3𝜔2

𝑒𝛽ℏ𝜔 − 1
−

𝛽ℏ𝜔3𝑒𝛽ℏ𝜔

(𝑒𝛽ℏ𝜔 − 1)2
= 0 ⇒ 3𝜔2(𝑒𝛽ℏ𝜔 − 1) − 𝛽ℏ𝜔3𝑒𝛽ℏ𝜔

= 0 ⇒ 

 

 

(3 − 𝛽ℏ𝜔)𝑒𝛽ℏ𝜔 = 3 

 

This leads to 𝜔𝑚𝑎𝑥 =
𝑎𝑘𝑇

ℏ
, in which 𝑎 is a constant (𝑎 ≈ 2.8). This means the 

maximum shifts to higher frequencies if the temperature increases.  



PROBLEM 3 

 

a) 

The partition function for the oscillator is given by: 

 

𝒵 = ∑ 𝑒−𝛽𝜀𝑗

∞

𝑗=1

= ∑ 𝑒−𝛽ℏ𝜔(𝑗+
1
2

)

∞

𝑗=1

= 𝑒−
𝑥
2 ∑ 𝑒−𝑗𝑥

∞

𝑗=1

=
𝑒−

𝑥
2

1 − 𝑒−𝑥
 

 

With 𝑥 = 𝛽ℏ𝜔. 

 

〈𝜀〉 = −
𝜕 ln 𝒵

𝜕𝛽
= −

𝜕 ln 𝒵

𝜕𝑥

𝜕𝑥

𝜕𝛽
= −ℏ𝜔

𝜕

𝜕𝑥
(−

𝑥

2
− ln(1 − 𝑒−𝑥)) =

1

2
ℏ𝜔 +

ℏ𝜔𝑒−𝑥

1 − 𝑒−𝑥
 

 

And putting back 𝑥 = 𝛽ℏ𝜔 we find: 

 

〈𝜀〉 =
1

2
ℏ𝜔 +

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
 

b) 

Use the Debye approach and consider elastic waves through the crystal. From the 

solution of the 1D-wave equation: 𝜑 = 𝐴 sin 𝑞𝑥𝑥 and taking this function to vanish at 

𝑥 = 0 and at 𝑥 = 𝐿 results in, 

 

𝑞𝑥 =
𝑛𝑥𝜋

𝐿
   with 𝑛𝑥 a non-zero positive integer. 

 

The total number of states with |𝑞⃗| < 𝑞 is then given by the length of the line 

representing positive integers (thus length 𝑞) divided by the unit length of one state, in 

𝑞-space. 

 

Φ(𝑞) =
𝑞
𝜋
𝐿

=
𝑞𝐿

𝜋
 

 

The number of states between 𝑞 + 𝑑𝑞 and 𝑞 is: 

 

𝑔(𝑞)𝑑𝑞 =  Φ(𝑞 + 𝑑𝑞) − Φ(𝑞) =
𝜕Φ

𝜕𝑞
𝑑𝑞 =

𝐿

𝜋
𝑑𝑞 

 

From the wave equation we also have 𝜔 = 𝑞𝑣0, substituting this in the equation 

above leads to, 

 

𝑔(𝜔)𝑑𝜔 =
𝐿

𝜋𝑣0
𝑑𝜔 

 



There is only independent wave mode for this 1-dimensional crystal (given in the 

exercise) namely, longitudinal (in a 3-dimensional crystal there are generally 3 modes, 

because then transversal waves can exist in both directions perpendicular to the 

direction of wave propagation, this would give a factor 3 in the equation above). 

 

c) 

The total number of frequencies (modes) should be N as there are N atoms. This is 

forced in the theory by introducing the Debye frequency which is the maximum 

frequency that cuts off higher modes, 

 

 

∫ 𝑔(𝜔)𝑑𝜔

𝜔𝐷

0

= 𝑁 = ∫
𝐿

𝜋𝑣0
𝑑𝜔

𝜔𝐷

0

=
𝐿𝜔

𝜋𝑣0
 

 

It follows that: 

 

𝜔𝐷 = 𝑁
𝜋𝑣0

𝐿
 

 

Using the Debye frequency we can rewrite, 

  

𝑔(𝜔)𝑑𝜔 =
𝐿

𝜋𝑣0
𝑑𝜔 =

𝑁𝑑𝜔

𝜔𝐷
 

 

d) 

First we derive an expression for the energy of the crystal, 

 

𝑈 = ∫ 𝑔(𝜔)〈𝜀(𝜔)〉𝑑𝜔

𝜔𝐷

0

= ∫ (
1

2
ℏ𝜔 +

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
)

𝑁𝑑𝜔

𝜔𝐷

𝜔𝐷

0

=
𝑁

𝜔𝐷
∫ (

1

2
ℏ𝜔 +

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
) 𝑑𝜔 =

𝜔𝐷

0

1

2
𝑁ℏ𝜔𝐷 +

𝑁

𝜔𝐷
∫ (

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
) 𝑑𝜔

𝜔𝐷

0

 

 

The heat capacity follows from, 

 



𝐶𝑉 = (
𝜕𝑈

𝜕𝑇
)

𝑉
= (

𝜕𝑈

𝜕𝛽
)

𝑉

(
𝜕𝛽

𝜕𝑇
)

𝑉
= −

1

𝑘𝑇2
(

𝜕𝑈

𝜕𝛽
)

𝑉

= −
1

𝑘𝑇2

𝜕

𝜕𝛽
(

1

2
𝑁ℏ𝜔𝐷 +

𝑁

𝜔𝐷
∫ (

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
) 𝑑𝜔

𝜔𝐷

0

) =

= −
1

𝑘𝑇2

𝑁

𝜔𝐷
(∫

𝜕

𝜕𝛽
(

ℏ𝜔

𝑒𝛽ℏ𝜔 − 1
) 𝑑𝜔

𝜔𝐷

0

)

= −
1

𝑘𝑇2

𝑁

𝜔𝐷
(∫

ℏ2𝜔2𝑒𝛽ℏ𝜔

(𝑒𝛽ℏ𝜔 − 1)2
𝑑𝜔

𝜔𝐷

0

)

=
ℏ2

𝑘2𝑇2
(

𝑘𝑇

ℏ
)

3 𝑁𝑘

𝑥𝐷
(

ℏ

𝑘𝑇
) (∫

𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝑥𝐷

0

) =
𝑁𝑘

𝑥𝐷
(∫

𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝑥𝐷

0

) 

 

With  

𝑥𝐷 =
ℏ𝜔

𝑘𝑇
=

𝜃𝐷

𝑇
 

 

When 𝑇 → ∞ then 𝑥𝐷 =
𝜃𝐷

𝑇
→ 0 and we can approximate the integrand with, 

 

𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
=

𝑥2(1 + 𝑥+. . )

(1 + 𝑥 + ⋯ − 1)2
= 1 

And thus 

𝐶𝑉 =
𝑁𝑘

𝑥𝐷
(∫

𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝑥𝐷

0

) =
𝑁𝑘

𝑥𝐷
(∫ 𝑑𝑥

𝑥𝐷

0

) = 𝑁𝑘 

 

 


